All posts in Osteoarthritis

Why does exercise make us feel happy?

Why does exercise make us feel happy?

So we all know that feeling that we get after exercise – we feel generally happier, less stressed, less anxious and also sleep better. Exercise produces a rush of happy hormones we also know as endorphins. So what are these endorphins and why do they make us feel happy?

Endorphins are chemicals that are produced in our brains in response to stress or pain. Running, doing a hard workout, playing a sport or any exercise at all that increases our bodies stress response has the ability to make our brains release endorphins. The endorphins have the ability to travel through our neural networks as a neurotransmitter. One thing we do know about endorphins is that they make us feel really good. So how does this work then?

A part of the brain called the hypothalamus sends a signal to increase endorphin uptake through our bodies neural network when we subject ourselves to certain activities like exercise, sex, eat certain foods or experience pain. The endorphins then attach themselves to specific receptor sites within our neural network – these are called opioid receptors. These special receptors have the ability to block out pain signals and also to increase that euphoric happy feeling we get after we exercise. It is the same receptors that are locked onto when we take pain relief in the form of opiates.

Once we achieve a positive result in something we do, either though through exercise or simple activities like sticking to a plan you’ve made, your brain will also release another happy hormone called dopamine. Dopamine is responsible for us feeling addicted to pleasure seeking behaviors. By setting regular and achievable exercise goals that you reach it is highly possible to make exercise the trigger for your brain to release dopamine.

Serotonin is another one of our brains happy hormones that act as a natural anti-depressant. When we exercise serotonin levels in our brain increase and so does your level of happiness.

I know all these terms may seem confusing but there is another very important happy hormone called oxytocin. Oxytocin is released when we feel loved, cared for and connected to others. Your brain will also release oxytocin when you are kind to others.

So no matter how hard it may seem to get yourself moving on some days, putting one foot in front of the other and pushing yourself to move and exercise is not only good for your muscles and joints but also stimulates your brain. You’ll produce your very own happy hormones, reduces your stress levels and have you wanting to repeat it all over again next time. Give your fellow team mates, friends and family an encouraging kind words regularly as well- it will not only help them feel happy but will increase your happiness as well.

More

Runner’s Knee: We can help!

Runner’s Knee: We can help!

At first it was just a niggle in your knee when you climbed stairs or were squatting. Then the pain and stiffness became more than a niggle and you began to feel it when walking, sitting and resting.

You may be hearing popping or cracking sounds in your knee, and notice that your knee “gives out” every now and again.

The knee is an amazing but complicated joint and knee pain is one of the most common reasons that people visit a physiotherapist.

Pain behind the kneecap is commonly called runner’s knee because it is often seen in athletes and people with an active lifestyle, although it can also be seen in everyone from the young adolescents during growth spurts to elderly people.

The medical term is patellofemoral pain syndrome. It is pain behind the kneecap where your patella (kneecap) slides along the groove in your femur (thighbone) beneath.

Pain and stiffness occurs when the kneecap does not slide smoothly and misaligns causing it to rub against your femur. Repeated mis-tracking causes pain, stiffness, and ultimately can cause damage to your kneecap joint surface.

Knee pain is most commonly noticed during activities that involve knee bending, jarring or weight bearing.

People most at risk are those whose sport or activity includes running, jumping or the need to land in a squatting position. Sports most commonly associated with knee pain include running, netball, volleyball, basketball, tennis, skiing and cycling. Many tradies such as tilers and carpet layers also have problems.

Causes of Runner’s Knee

Overuse – increased activity or increased duration and intensity of the activity
Changes in footwear or playing surfaces
Tight outer thigh muscles and weaker inner thigh muscles causing the kneecap to be pulled to one side
A twisting injury
Surgery
Excess weight
Flat feet and lack of arch support
Weak hip control muscles

First aid for Runner’s Knee

Generally, knee pain is gradual onset, which means it gradually increases in severity over time.

As with most injuries, the best initial first aid is rest, ice packs (15 minutes at a time every 2-3 hours), and taking anti-inflammatory painkillers such as ibuprofen.

You do not need a referral from a doctor to see a physiotherapist. If the pain is moderate, then you can seek treatment with your Physiotherapist immediately.

Physiotherapy Options

Physiotherapy is a proven treatment for runner’s knee. Your physiotherapist may initially tape or strap your kneecap to help pull it back into alignment and reduce pain.

Massage and joint mobilisation techniques are also commonly used to reduce swelling and restore movement.

You will be prescribed exercises to stretch and strengthen muscles that may be contributing to the problem. These exercises will change as you heal and will gradually increase in intensity to match your recovery.

If you wish to continue exercising to maintain your fitness during your treatment, then explore swimming, deep-water running and low-impact gym equipment such as elliptical trainers.

Depending on your knee pain cause, you may also be advised to explore arch supports, orthotics or different footwear. You may also require postural or technique correction in your chosen sport to stop problems from recurring, as well as a strength and conditioning plan to get you back to full competitive fitness.

In our experience, over 90% of runner’s knee physiotherapy clients will be pain free within six weeks of starting treatment. However, for severely damaged joints or arthritic joints, surgery may be required.

Things to Remember

Runner’s knee or patellofemoral pain syndrome is a common cause of knee pain.

It is a gradual onset injury and is most commonly noticed during activities that involve knee bending, jarring or weight bearing.

Physiotherapy is a proven method to speed healing, and prevent recurrence of knee pain.

Future management may also involve assessment of your gait and posture during exercise, and prescription of arch support or custom made orthotics.

More

Knee Bracing helps with Osteoarthritis Pain

Knee Bracing helps with Osteoarthritis Pain

Wearing a knee brace has been shown to “significantly improve the pain and symptoms” of a type of osteoarthritis affecting the kneecap, according to a new study.

Arthritis Research UK-funded researchers at The University of Manchester claim their findings, presented at the Osteoarthritis Research Society International meeting in Philadelphia have enormous potential for treating this common joint condition effectively — as well as providing a simple and cheap alternative to painkillers.

Osteoarthritis of the knee affects around six million people in the UK and is increasing as the population ages and becomes more obese. Current treatments are limited to pain relief and joint replacement.

Osteoarthritis of the knee affecting the kneecap (patellofemoral osteoarthritis) accounts for about 20% of patients with knee pain. They typically experience pain that is made worse by going up and down stairs, kneeling, squatting and prolonged sitting.

“There’s a pressing need for non-surgical interventions for knee osteoarthritis, and little attention has been paid to treatments particularly aimed at the kneecap (the patellofemoral joint), a major source of knee pain,” explained Dr Michael Callaghan, research associate in rehabilitation science at the University of Manchester.

“We’ve shown that something as simple as a lightweight knee brace can dramatically improve the symptoms and function for people with this particular type of knee osteoarthritis.”
The research team conducted a randomised controlled trial of a lightweight lycra flexible knee brace fitted around the knee with a support strap for the kneecap. One hundred and 26 patients between the ages of 40 and 70 were treated over a 12-week period. All had suffered from arthritic knee pain for the previous three months.

They were randomly allocated to either immediate brace treatment or delayed treatment (i.e. after six weeks.) Both groups of patients eventually wore the brace for a period of 12 weeks and averaged roughly seven hours a day.
After six weeks of brace wearing there were significant improvements between the brace wearing group and the no treatment group in scores for pain, symptoms, knee stiffness, muscle strength and function. After 12 weeks there were significant improvements in these scores for all patients compared to when they started.

“Patients repeatedly told us that wearing the brace made their knee feel more secure, stable, and supported,” Dr Callaghan added. “Our theory is that these sensations gave the patient confidence to move the knee more normally and this helped in improving muscle strength, knee function and symptoms.”
Professor Alan Silman, medical director of Arthritis Research UK, which funded the trial, said: “Osteoarthritis of the knee is a painful disorder that affects millions of people in the UK, causing pain and reducing activities. We know that in patients with arthritis, the knee joint is frequently out of normal alignment, which might be an underlying cause of the problem, as well as making it worse.

“By using a simple brace, the researchers have been able not only to correct the alignment but achieve a very worthwhile benefit in terms of reducing pain and function. This approach is a real advance over relying on pain killers and has the potential to reduce the end for joint surgery and replacement, procedures often employed when the symptoms become uncontrollable.”

The ROAM (Research into Osteoarthritis in Manchester) project has run three trials at The University of Manchester and the University of Salford.

More

Understanding why we get Back Pain

Understanding why we get Back Pain

Figures suggest that around 80% of people experience back pain at some time in their lives. Back and neck pain can be very debilitating so how a physiotherapist manages back pain treatment is essential to secure a positive result. Back pain can be localised in and around the spine, but can also be experienced as sciatic pain. Headaches and migraines are also commonly caused by neck issues.

Exercise is important
Exercise is gaining recognition as playing a vital role in the long term recovery and in preventing many musculoskeletal injuries, including back and neck pain. Exercise compliments physiotherapy treatment management and achieve long term results when trying to prevent and rehabilitate pain and injury by correcting the underlying causes, not just seeking to stop the pain.

The underlying biomechanics that cause back and neck pain
Most back pain is caused by excessive loading placed on muscles, joints, ligaments, spinal discs, etc. due to poor core stability. Core stability is traditionally defined as; an individual’s strength and control of their lower back, pelvic and abdominal muscles in order to maintain optimal postural alignment of the lower back and pelvis.

However it is important to also include the shoulder girdle and rib cage, as the lower back and pelvis do not operate in isolation, and muscles throughout the torso must act in a coordinated manner in order to maintain optimal postural alignment and also to initiate biomechanically efficient upper and lower limb movements.

A good analogy to help understand core stability is to consider how a tent is supported. A tent is held upright by a rigid tent pole. The bones of your spine act like a tent pole, however your spine is not rigid, so it relies on the support of ligaments and deep stabilising muscles to hold adjacent vertebrae and to help maintain optimal postural alignment i.e. stabilise the spine. If the muscles that stabilise the spine, pelvis, rib cage and shoulder are weak or are poorly controlled then your spine will tend to collapse, just like a tent pole made from a piece of spaghetti. There are many muscles that attach directly onto the spine, pelvis, rib cage and shoulders. These muscles move our torso and limbs and also assist with stabilising the core, acting in a similar way that guide ropes help to keep the tent pole upright. If a tent had guide ropes that pulled more on one side than on the opposite side then the tent would lean, so too, if the muscles on one side pulled more than the other due to imbalances in strength and/ or flexibility, or these muscles compensate for weak stabiliser muscles then they will pull your body into a poor postural alignment. One very important difference to note is that a tent only requires “static stability” i.e. support to maintain a single stationary position, whereas, the human body must have “dynamic stability” to provide support and maintain optimal alignment of their core and limbs whilst moving in many different ways to participate in sport, work and daily living activities.

How a physiotherapist corrects biomechanical faults
Physiotherapists conduct a comprehensive physical assessment and then use this information to design a personalised exercise program to improve posture/ biomechanics, core stability, flexibility, functional strength, cardiovascular fitness, balance and coordination. Programs focus on achieving long term results by correcting the underlying biomechanics causes of your pain, improving the strength of muscles that support your back and neck and teaching efficient movement for your specific sport, work or daily living activities. Expert supervision by an Physiotherapist ensures that each client completes the exercises with good technique to prevent further injury, to ensure that the exercises are effective, and also to ensure that progressions are made at safe and appropriate times.

 

More