All posts in Running

Calf strength in Running and Walking

Calf strength in Running and Walking

Calf Strength in Running and Walking

Running and Walking are both movements that propel us forward, but did you realise that we use a different amount of energy from our lower limb muscles to perform both of these activities?

These differences in the amount we engage our different muscle groups in our lower limb, depending on whether we go for a run or a walk, are important to understand so that you can target your training effectively.

Why is Calf Strength Important?

What you may find most surprising is that both in walking and running our calves do most of the work in our lower limbs, so calf strength is super important to consider in our training. If you want more power in your strides for either running or, walking then spending some time each week on specifically improving your calf strength will definitely help your movement efficiency.

According to research (Novacheck, 1997) when we go for a walk our calves do 53% of the work, whereas when we go for a run our calves do 41% of the work. This is also why our calves are often sore after a walk or run. This can be especially so if we are new to the exercise or have had a break from walking or running for a while. Post walk or running calf stretches and or foam rolling will also help you keep your flexibility in calves.

At Saanich Physiotherapy and Sports Clinic we recommend that if you are going to start doing strength training, it is best to stretch and foam roll your targeted muscles first . Remember each stretch should be held for at least 30 seconds and foam rolling can done for approximately 1 minute on each leg. Now you are ready to tackle your strength training exercises. If you think about it, trying to contract a muscle that is already super tight it won’t be as effective as you will not have as much available muscle length to work with.

Here are some stats on other important muscles groups:

Lower limb muscle use during walking
Hip Extensors – 7%
Hip Flexors – 30%
Hip Abductors – 6%
Knee – 4%

 

Lower limb muscle use during running
Hip Extensors – 14%
Hip Flexors 20%
Hip Abductors 3%
Knee – Quads 22%

More

Sports Injury Treatment

Sports Injury Treatment

Treatment Protocols have changed significantly when it comes to sports Injuries even though the injuries themselves have remained unchanged in medical textbooks for many years.

Most of the advances in treatment have come about from research lead by exercise physiologists and specialists who monitor and test our elite athletes and of course lets not forget the sharp learning curve provided by good old fashion trial and error.

It wasn’t that long ago a patient booked for knee surgery would be in a cast and asked to rest as much as possible. Medical specialist began to realise that the cast would accelerate atrophy (muscle wasting) of the leg muscles making postoperative recovery a long and unnecessary drawn out.

Nowadays the complete opposite occurs. Instead of resting and immobilising the injured segment, the patient is given a carefully considered treatment plan combined with prescribed rehabilitation exercises, pre and post-operatively.

There are a number of important factors to be considered before any treatment or rehabilitation program is given to minimise aggravation of the healing structures. A poor and inexperienced approach could set back recovery significantly, or worse, contribute to further damage to the recovering tissues.

Our physiotherapists have years of experience treating injuries. They have seen just about every combination of sports injury and treat many elite athletes.

Treating any injury whether it is sports related, work related or just plain bad luck does not change the rehab rules. Each injury is categorised in different phases with goals and criteria to progress through each different phase.

All our rehabilitation exercises are based on best current practices that are evidence-based. Our Physiotherapists clearly set out what type of exercises are appropriate for the current injury level, how many reps, at what intensity and how many times in the day these exercises should be completed.
Combine this approach with his proven treatment protocols gives our patients the best results.

In nearly all cases, treatment is accompanied by a customised exercise rehab program to accelerate recovery and enhance positive long lasting results.

More

Biomechanical Running Analysis

Biomechanical Running Analysis

Running Analysis

A Running Analysis at Saanich Physio involves one of our experienced Physiotherapists observing and assessing how you run. We will watch you in real time and also video you, so that we can analyse your form in slow motion.

This kind of analysis is helpful whether you have an injury or if you want to know if you are running with optimal technique. We will explain our findings to you, with analysis of how certain movement patterns or imbalances may contribute to your injury or efficiency as a runner.

We highly recommend this no matter what level of ability you are, whether a beginner, weekend jogger or competitive athlete.

We Are Runners
We feel that in order to understand runners and running injuries, it’s helpful to be a runner yourself. Our Physiotherapists are all keen runners and between them have competed in short and mid distance track events all the way up to half marathons, full marathons and ultra-marathon distances.

Video Analysis
We watch you run in real time, then record you and analyse your form using slow motion video. We will outline how your form compares to the ideal. We will only look to change particular elements of your form if it is impacting on your injury, efficiency or if it will help you prevent injury.

Education
We focus on education, with a clear explanation of our findings and how they impact your body. We work with you to achieve a more efficient running technique.

Results

Our aim is to get you back running as quickly as possible if injury is stopping you. We will provide specifically targeted exercises and a return to running program if needed. Our aim is to help you achieve a stronger form, become more efficient, and prevent injury.

Our experienced Saanich Physiotherapists will analyse your running technique and help you achieve better form to prevent injury and maximise efficiency.
Your Physiotherapist will start by discussing your running program and injury history with you.

They will then video you running. From observing you in real time and also through slow motion recording, they will explain what ideal running form is and how your technique compares.

Based on the findings from the video analysis we can give you specific and individualised cues to help improve your form. You will have a chance within the session to practice this on the treadmill and review your video footage.

A biomechanical assessment may also be performed to test your joints and muscles for flexibility and strength. From this information we will create a specific and focused treatment plan that will work to correct your imbalances and help you become a better runner.

Three Steps to Better Form

Video analysis and running assessment software

Biomechanical assessment of your strength and flexibility

Personalised video home exercise program which can be accessed on your smartphone or computer

Conditions Treated

Patellofemoral joint injury/runner’s knee

Gluteal tendinopathy

Achilles tendinopathy

Patellar tendinopathy

Shin splints

Hamstring tendinopathy

Groin pain

Tibialis posterior tendon injury

Plantar fasciitis

Iliotibial band syndrome

Hip impingement, labral injuries

Foot pain

Stress fractures

Chronic strains and sprains

and more!

More

Running and Osteoarthritis

Running and Osteoarthritis

Does running accelerate the development of osteoarthritis?

There are so many misconceptions about running and how bad it can be for your joints. You may have heard many friends and family members comment on this and they may have even tried to convince you to stop running and go swimming instead. Here is what the scientific research tells us so far:

Osteoarthritis (OA) is a musculoskeletal condition that involves degeneration of the joints and impact during weightbearing exercise such as running and may contribute to joint loads. There is very little evidence however, that running causes OA in the knees or hips. One study reported in 1985 by Sohn and Micheli compared incidence of hip and knee pain and surgery over 25 years in 504 former cross-country runners. Only 0.8% of the runners needed surgery for OA in this time and the researchers concluded that moderate running (25.4 miles/week on average) was not associated with increased incidence of OA.

In another smaller study of 35 older runners and 38 controls with a mean age of 63 years, researchers looked at progression of OA over 5 years in the hands, lumbar spine and knees (Lane et al. 1993) . They used questionnaires and x-rays as measurement tools. In a span of 5 years, both groups had some participants who developed OA- but found that running did not increase the rate of OA in the knees. They reported that the 12% risk of developing knee OA in their group could be attributed to aging and not to running. In 2008, a group of researchers reported results from a longitudinal study in which 45 long distance runners and 53 non-runners were followed for 21 years. Assessment of their knee X-Rays, revealed that runners did not have a higher risk of developing OA than the non-running control group. They did note however, that the subjects with worse OA on x-ray also had higher BMI (Body Mass Index) and some early arthritic change in their knees at the outset of the study.

Is it better to walk than to run?

It is a common belief that it must be better to walk than to run to protect your joints. In a recent study comparing the effects of running and walking on the development of OA and hip replacement risk, the incidence of hip OA was 2.6% in the running group, compared with 4.7% in the walking group (Williams et al 2013). The percentage of walkers who eventually required a hip replacement was 0.7%, while in the running group, it was lower at 0.3%. Although the incidence is small, the authors suggest the chance of runners developing OA of the hip is less than walkers.
In the same study, Williams and colleagues reinforced that running actually helped keep middle-age weight gain down. As excess weight may correlate with increased risk of developing OA, running may reduce the risks of OA. The relationship between bodyweight and knee OA has been well-established in scientific studies, so running for fitness and keeping your weight under control is much less likely to wear out your knees than being inactive and carrying excess weight.

Is there a limit?

Recent studies have shown that we should be doing 30 minutes of moderate exercise daily to prevent cardiovascular disease and diabetes. But with running, researchers still have not established the exact dosage of runners that has optimal health effects. Hansen and colleagues’ review of the evidence to date reported that the current literature is inconclusive about the possible relationship about running volume and development of OA but suggested that physiotherapists can help runners by correcting gait abnormalities, treating injuries appropriately and encouraging them to keep the BMI down.

We still do not know how much is “too much” for our joints. However, we do know that with age, we expect degenerative changes to occur in the joints whether we run or not. Osteoarthritis is just as common as getting grey hair. The important thing is that we keep the joints as happy and healthy as possible.

How do you start running?

If you are not a runner and would like to start running, walking would be a good way to start and then work your way up to short running intervals and then longer intervals as you improve your fitness and allow time for your body to adapt. Therefore, running in general is not bad for the joints. It does not seem to increase our risk of developing OA in the hips and knees. But the way you run, the way you train and how fast you change your running frequency and distance may play a role in future injuries of the joints.

More